Zur Frage der Rückreaktionen bei der thermischen Zersetzung von Kalkstein, Magnesit und Dolomit.

(Kurze Mitteilung.)

Von.

F. Bischoff.

Aus dem Institut für anorganische und physikalische Chemie der Technischen Hochschule Graz.

(Eingelangt am 13. März 1950. Vorgelegt in der Sitzung am 23. März 1950.)

Die beim vollständigen Brennen von Kalkstein, Magnesit und Dolomit anfallenden Produkte bestehen im wesentlichen aus CaO, bzw. MgO, bzw. CaO und MgO.

Gut bekannt ist die Tatsache, daß Calciumoxyd mit trockenem Kohlendioxyd bei Zimmertemperatur in kaum merklichem Maße reagiert, jedoch bei höheren Temperaturen mit einer solchen Geschwindigkeit, daß die Messung echter Gleichgewichte möglich ist.

Tabelle 1. Prüfung der Rückreaktion:

 ${
m CaO} + {
m CO}_2 \rightarrow {
m CaCO}_3.$ Naturlicher Kalkstein (97,25% ${
m CaCO}_3$), 2 Stdn. 980° C ${
m erhitzt} \rightarrow {\it CaO}$.

 CO_2 -Verlust: 99,10 Mol-% CO_2 . Versuche im CO_2 -Strom (1 at).

Temperatur ° C	Zeit h	CO ₂ -Aufnahme in Mol-%	
25	2	0,3	
400	2	4,9	
400	11	18,4	
460	1	23,3	
500	1	42,0	
500	14	77,7	
550	2	79,3	

Tabelle 2. Prüfung der Rückreaktion:

 $\begin{array}{c} {\rm MgO\, +\, CO_2 \rightarrow MgCO_3.} \\ {\rm Nat\"urlicher} \quad {\rm Magnesit} \quad (95.82\,\% \\ {\rm MgCO_3)}, \ 2 \ {\rm Stdn.} \ 600\,^{\circ} \ {\rm C} \\ {\rm erhitzt} \rightarrow MgO. \end{array}$

Zeit	CO ₂ -Aufnahme	
h	in Mol-%	
2	0	
1	0	
7	prakt. 0	
14	0,5	
	2 1 7	

Weniger bekannt ist, daß Magnesiumoxyd mit *trockenem* Kohlendioxyd auch bei höheren Temperaturen praktisch nicht reagiert^{1, 2, 3}, daß aber die Anwesenheit einer CO₂-Atmosphäre den thermischen Zerfall von Magnesit stark hintanhält⁴.

¹ R. Marc und A. Simek, Z. anorg. allg. Chem. 82, 42 (1913).

² M. Centnerszwer und B. Bruzs, Z. physik. Chem. 114, 249 (1924).

³ G. F. Hüttig und W. Frankenstein, Z. anorg. allg. Chem. 185, 414 (1930).

⁴ F. Bischoff, Radex-Rundschau 1, 12 (1949).

Temperatur	CO ₂ Druck	Zeit	CO ₂ -Aufnahme
° C	at	h	in Mol-%
25—520	10—18	10	$\frac{3,2}{7.2^5}$
25—520	10—18	10	

Versuche im Autoklaven mit CO2.

Zur Darstellung des halbgebrannten Dolomits ist die Kenntnis wichtig, ob sich ein vollkommen zersetzter Dolomit gegenüber CO₂ wie ein Gemisch von CaO und MgO verhält. Einige Versuche zur Beantwortung dieser

Frage seien im folgenden kurz mitgeteilt (Tab. 1—3).

Obige Ergebnisse zeigen, daß die Aufnahme von trockenem CO₂ durch CaO oberhalb 550°C schon erhebliche Geschwindigkeiten erreicht, während MgO mit CO₂ praktisch nichtreagiert. Auch die Anwendung von Druck kann die Aufnahme von CO₂ durch MgO nur im Ausmaße weniger Molprozente erzwingen; inter-

Tabelle 3. Prüfung der Rückreaktion: CaO·MgO+CO₂ \rightarrow MgO·CaCO₃. Natürlicher Dolomit (30,95% CaO, 21,28% MgO, 47,2% CO₂), 4 Stdn. bei 800°C geglüht \rightarrow CaO·MgO. CO₂·Verlust: 99,15 Mol·%. Versuche im CO₂·Strom.

-					
Zeit h	CO ₂ -Aufnahme in Mol-% (auf CO ₂ /CaO = 100 bezogen) ⁶				
9	96,80				
2	96,60				
4	97,00				
	h 9				

essant ist die katalytische Wirkung geringer Wasserdampfmengen auf die CO_2 -Aufnahme. Die Werte der Tabelle 3 zeigen, daß ein vollständig gebrannter Dolomit ab 550°C durch partielle CO_2 -Aufnahme leicht in einen "halbgebrannten" überführt werden kann.

Aktivierung der Desoxyribonuclease durch Hexonbasen.

(Kurze Mitteilung.)

Von

W. Frisch-Niggemeyer und O. Hoffmann-Ostenhof.

Aus dem I. Chemischen Laboratorium der Universität Wien.
(Eingelangt am 15. März 1950. Vorgelegt in der Sitzung am 23. März 1950.)

Bei einer Untersuchung des Einflusses verschiedener Wirkstoffe auf die Aktivität eines hochgereinigten Präparats von Desoxyribonuclease konnten wir feststellen, daß l-Arginin, l-Lysin und l-Histidin in ver-

⁵ Zusatz von 0,1 g H₂O.

 $^{^6}$ Wegen Silikaten und anderer Verun
reinigungen ist die exakte Aufteilung des CO_2 auf Ca
O und MgO unmöglich.